
                   

JOURNAL OF COMPUTATIONAL PHYSICS146,301–321 (1998)
ARTICLE NO. CP986067

A Nonlinear Multigrid Method for the
Three-Dimensional Incompressible

Navier–Stokes Equations

D. Drikakis,∗ O. P. Iliev,† and D. P. Vassileva†
∗UMIST, Department of Mechanical Engineering, P.O. Box 88, Manchester M60 1QD, United Kingdom;

†Institute of Mathematics and Informatics, Bulgarian Academy of Science,
Acad. G. Bonchev St., bl. 8, BG-1113 Sofia, Bulgaria

E-mail: drikakis@umist.ac.uk, oleg@math.acad.bg, vasileva@math.acad.bg

Received December 18, 1997; revised July 12, 1998

A nonlinear multigrid method is developed for solving the three-dimensional
Navier–Stokes equations in conjunction with the artificial compressibility formu-
lation. The method is based on the full multigrid (FMG)—full approximation stor-
age (FAS)—algorithm and is realized via an “unsteady-type” procedure, accord-
ing to which the equations are not solved exactly on the coarsest grid, but some
pseudo-time iterations are performed on the finer grids and some on the coarsest
grid. The multigrid method is implemented in conjunction with a third-order up-
wind characteristics-based scheme for the discretization of the convection terms,
and the fourth-order Runge–Kutta scheme for time integration. The performance of
the method is investigated for three-dimensional flows in straight and curved channels
as well as flow in a cubic cavity. The multigrid acceleration is assessed in contrast
to the single-grid and mesh-sequencing algorithms. The effects of various multigrid
components on the convergence acceleration, such as prolongation operators, as well
as pre- and postrelaxation iterations, are also investigated.c© 1998 Academic Press

Key Words:multigrid; Navier–Stokes equations; upwind schemes; artificial com-
pressibility.

1. INTRODUCTION

During the last decade, rapid advances in computer hardware have provided new avenues
in the numerical simulation of three-dimensional fluid flows. However, even with the use of
the most powerful super-computers the CPU requirements for three-dimensional steady and
unsteady computations are still very high. Beside the use of parallel computers which allow
us to reduce the computing time by increasing the number of processors, multigrid methods
have been established as a powerful tool for accelerating the numerical convergence and,
thus reducing the computing time.
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The origin of the multigrid method is found in the papers of Fedorenko [1] and Bakhvalov
[2], and later on in the work of Brandt [3]. To make reference to all past works in connection
with multigrid methods would be a task for the introduction of a book (e.g. [4, 5]) rather than
of the present paper. However, it is worth mentioning that most of the developments and
applications of multigrid method for incompressible flows are related to elliptic systems of
equations and mainly to SIMPLE-type approaches (e.g. Copeet al. [6]). On the other hand,
very few studies have dealt with the development of multigrid methods in conjunction with
the artificial compressibility method (ACM) [7]. The idea of ACM is to introduce a pseudo-
temporal equation for the pressure through the continuity equation and, subsequently to
couple the continuity with the momentum equations. Although there exist different implicit
and semi-implicit methods for the incompressible Navier–Stokes equations and the present
authors have experience with such methods, including semi-implicit projection methods of
SIMPLE-type and algorithms for vorticity–vector potential formulation of the incompress-
ible Navier–Stokes equations, there are several arguments which justify the use of ACM
for computing incompressible flows. The most important arguments are: (i) there is re-
cently an increasing interest to explicit methods since they offer high efficiencies in parallel
computations, especially in the case of massively parallel computations; (ii) the discreti-
sation schemes and solvers developed in conjunction with ACM for incompressible flows
have many similarities with the methods developed for compressible flows. Therefore, the
computational experience and developments gained from incompressible flows can easily
be transferred to compressible flows and vice versa. Since, in many industrial applications
both the computation of compressible and incompressible flows is sometimes required, e.g.
automotive industry, the usage of ACM-based approaches offers a lot of advantages.

Concerning the development of multigrid methods in conjunction with ACM, there are
very few studies in the literature. Farmeret al. [8] have developed a multigrid scheme for
the solution of the Euler equations in conjunction with the ACM and applied it to free sur-
face flows. They reported that 400W-multigrid cycles were required to achieve convergence
for the inviscid flow around a ship hull including free surface effects. Shenget al. [9] have
developed a multigrid algorithm for 3D incompressible turbulent flows in conjunction with
the ACM and Newton relaxation methods. They investigated two different approaches for
building coarse grid equations as well as the influence of implicit correction smoothing on
increasing the stability of the scheme. They reported fast convergence rates for the case of
external flows, but the multigrid efficiency appeared to deteriorate in the case of complex
internal flows. The above multigrid methods were similar to the Jameson’s multigrid proce-
dures originally developed for the solution of the compressible Euler equations [10–12] and
later on applied to the compressible Navier–Stokes equations [13, 14]. Lin and Sotiropoulos
[15] have also recently developed a three-level V-cycle multigrid algorithm in conjunction
with the ACM using a first-order upwind differencing for the discretization of the con-
vection terms during the coarse grid iterations, while various schemes were implemented
and tested for the discretization of these terms on the fine grid. They employed the FAS
scheme proposed by Brandt, starting with an estimate of the solution on the finest grid and
performing a fixed number of iterations on the coarser grids.

Other recent contributions in the field of multigrid methods, however, less relevant to
the approaches used in this study, include the work by Dailey and Pletcher [16] who pre-
sented the implementation of multigrid method in conjunction with the preconditioned
Navier–Stokes equations for low-Mach number two-dimensional, steady and unsteady
flows. Lotstedt [17] also investigated three different relaxation procedures, Runge–Kutta
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time-stepping, GMRES, and modified GMRES, in conjunction with a multigrid algorithm
for solving the steady state Euler equations, while recently Steelantet al. [18] presented
a theoretical analysis of different implicit methods in multigrid form for the case of low
Mach number flows.

The main differences between the present multigrid method and the aforementioned
contributions are:

• the combination of the FMG and FAS approaches for solving the artificial compress-
ibility formulation of the Navier–Stokes equations. The FMG procedure is used to provide
a good initial approximation before the execution of V-cycles on the fine-grid, but also to
calculate the basiccoarse-grid functionsused in the FAS procedure (see discussion about
the FAS algorithm in Section 3);
• the implementation of the FMG-FAS in conjunction with a third-order upwind char-

acteristics-based scheme [19, 20], the latter being employed for the discretization of the
convection terms at all grid levels, and
• the implementation and testing of various prolongation operators in conjunction with

the FAS-FMG procedure, including a new operator, henceforth labelledmixed-prolongation,
which is based on an upwind prolongation in the streamwise direction and bilinear prolon-
gation in the cross-stream direction.

Subsequently, the objectives of the present study are (i) to develop the FMG-FAS non-
linear multigrid method and demonstrate its efficiency in various 3D incompressible flows,
(ii) to investigate the effects of various multigrid components on the convergence accelera-
tion, such as prolongation operators, coarsest-grid iterations, as well as pre- and postrelaxa-
tion iterations, and (iii) to assess the performance of the method against the mesh-sequencing
and single-grid algorithms.

The remainder of the paper is organised as follows. In Section 2 the solution method is
presented. The multigrid algorithm is described in Section 3 and the results are presented
in Section 4. Finally, in Section 5 conclusions from the present study are drawn.

2. GOVERNING EQUATIONS AND SOLUTION METHOD

The governing equations and discretization scheme are described in detail in [19, 20].
In this paper the method is briefly presented in order to understand the implementation
of the multigrid algorithm. The governing equations are the Navier–Stokes equations in
curvilinear coordinates(ξ, η, ζ ):

(JU)t + (EI )ξ + (FI )η + (GI )ζ = (EV )ξ + (FV )η + (GV )ζ .

The unknown solution vectorU is

U = (p/β, u, v, w)T,
where p is the pressure;u, v, andw are the velocity components; andβ is the artificial
compressibility parameter.

The inviscid fluxesEI , FI ,GI and the viscous fluxesEV , FV ,GV are written as

EI = J(Ẽ I ξx + F̃ I ξy+ G̃I ξz)

FI = J(Ẽ I ηx + F̃ I ηy+ G̃I ηz)

GI = J(Ẽ I ζx + F̃ I ζy+ G̃I ζz)



          

304 DRIKAKIS, ILIEV, AND VASSILEVA

EV = J(ẼVξx + F̃Vξy + G̃Vξz)

FV = J(ẼVηx + F̃Vηy + G̃Vηz)

GV = J(ẼVζx + F̃Vζy + G̃Vζz),

where the fluxes with “tildes” denote the corresponding Cartesian fluxes:

Ẽ I =


u

u2+ p
uv
uw

 , F̃ I =


v

uv
v2+ p
vw

 , G̃I =


w

uw
vw

w2+ p

 ,

ẼV =


0
σxx

σxy

σxz

 , F̃V =


0
σyx

σyy

σyz

 , G̃V =


0
σzx

σzy

σzz

 .
The termsσi j (i, j = x, y, z) are the viscous stresses andJ is the Jacobian of the transfor-
mation from Cartesian to generalised coordinates:

J = xξ (yηzζ − yζ zη)+ xη(yζ zξ − yξzζ )+ xζ (yξzη − yηzξ ).

A characteristics-based method [19, 20] is used for the discretization of the inviscid
terms. A Riemann solution in each flow direction can be constructed by splitting the inviscid
equations into three one-dimensional equations. The primitive variables (p, u, v, w) at the
cell faces of the computational volume can then be defined as functions of their values
(pκ , uκ , vκ, wκ ) on the characteristics denoted by the subscriptκ (κ = 0, 1, 2). For example,
the primitive variables at the cell facesξ = const are calculated as

u = Rx̃ + u0(ỹ2+ z̃2)− v0x̃ ỹ− w0x̃z̃

v = Rỹ+ v0(x̃2+ z̃2)− w0z̃ỹ− u0x̃ ỹ

w = Rz̃+ w0(ỹ2+ x̃2)− v0z̃ỹ− u0x̃z̃

p = p1− λ1(x̃(u− u1)+ ỹ(v − v1)+ z̃(w − w1)),

where

R= 1

2s
(p1− p2+ x̃(λ1u1− λ2u2)+ ỹ(λ1v1− λ2v2)+ z̃(λ1w1− λ2w2))

s=
√
λ2

0+ β, φ̃ = ξφ√
ξ2

x + ξ2
y + ξ2

z

, φ = x, y, z

In the above formulasλ0, λ1, andλ2 are the eigenvalues defined by

λ0 = ux̃ + v ỹ+ wz̃,

λ1 = λ0+ s, λ2 = λ0− s.
(1)

The characteristic variables are calculated by a third-order upwind scheme,

U (l ,r )
i+1/2,κ =

1

2

(
(1+ sign(λκ))U

(l )
i+1/2+ (1− sign(λκ))U

(r )
i+1/2

)
,
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where

U (l ,r )
i+1/2,κ = (pκ , uκ , vκ, wκ)T

U (l )
i+1/2 =

1

6
(5Ui −Ui−1+ 2Ui+1)

U (r )
i+1/2 =

1

6
(5Ui+1−Ui+2+ 2Ui ).

The viscous terms are discretized by central differences and the time integration is obtained
by an explicit Runge–Kutta method,

U (1) = Un

U (2) = Un − 1t

2
N
(
U (1)

)
U (3) = Un − 1t

2
N
(
U (2)

)
U (4) = Un −1t N

(
U (3)

)
Un+1 = Un − 1t

6

[
N
(
U (1)

)+ 2N
(
U (2)

)+ 2N
(
U (3)

)+ N
(
U (4)

)]
,

wheren is the previous time level andN comes from rewriting the Navier–Stokes equations
in the form:

(JU)t + N(JU) = 0.

The local time step1t varies between the four Runge–Kutta stages and is defined by

1t = CFL

max
m
{µm} , (2)

whereµm = max{(|λ1|, |λ2|)
√
χ2

x + χ2
y + χ2

z }, m (m= 1, 2, . . . ,6) is the volume cell-face

pointer,λ1 andλ2 are the eigenvalues (see Eq. (1)) at the cell faces, andχ stands either
for ξ , η, or ζ . Thus, the local time step1t depends on the grid and flow velocities. A CFL
number of 0.5 was used in all calculations.

3. MULTIGRID ALGORITHM

To accelerate the convergence of the single-grid Navier–Stokes method presented in the
preceding section, afull multigrid-full approximation storage(FMG-FAS) algorithm has
been developed. As discussed in the introduction, the multigrid method is amongst the most
popular approaches for accelerating fluid flow computations. Although the method was
originally suggested for solving elliptic flow problems, it has also been successfully imple-
mented in other cases, such as hypersonic flows [21]. However, little experience has been
acquired so far from its implementation in conjunction with the artificial compressibility
formulation [8, 9, 15].

In the present work various prolongation operators have been implemented and tested.
Some of the prolongation operators used here, e.g. upwind prolongation, cannot be used in
conjunction with elliptic systems of equations. In the present work a three-level multigrid
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FIG. 1. Schematic of the full multigrid (FMG) for three grids. I. Single grid computation on the coarsest grid;
II. Two-level multigrid computation on the intermediate grid; III. Three-level multigrid computation on the finest
grid.

has been developed. There are several reasons for the choice of the so-calledshort-multigrid
and among them are:

• the coarsest-grid levelshould have a sufficient number of grid points to provide a
good correction onto the fine grid. Numerical experiments have shown that in the case
of very coarse grids the efficiency of the multigrid is significantly reduced. This has also
been observed in theoretical investigations of multilevel algorithms for nonsymmetric (see,
e.g. [22, 23] and references therein) and nonlinear problems (see, e.g. [24] and references
therein);
• short-multigridalgorithms are more efficient in parallel computations, as demonstrated

in previous studies bẙAlund et al. [25] and Axelsson and Neytcheva [26, 27];
• finally, it should be pointed out that the use of several grid levels increases the com-

plexity of the computer code and memory requirements. If calculations on very fine grids
are required, an alternative strategy could be to solve the equations sequentially on sets of
three grids. In this case the initial condition, as well as thecoarse-gridfunctions (see also
the discussion about the FAS algorithm in this section), can be obtained by the solutions on
the previous set of three grids.

The three-level FMG-FAS algorithm is schematically shown in Figs. 1 and 2, while the
basic steps are listed below:

Auxiliary stage I—single grid solution

Ucg := N−1
cg 0cg compute coarsest grid solution

U0
ig :=PUcg prolongation—initial guess on the intermediate grid

FIG. 2. Schematic of the V-cycle.
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Auxiliary stage II—multigrid sweeps on two grids

repeat

Uig :=Sig(Uig, 0ig, ν1) ν1 prerelaxation iterations
dig :=NigUig compute intermediate grid defect
dcg :=Rdig restriction of the defect to the coarsest grid

fcg :=−dcg+ NcgV̄cg compute right-hand side on the coarsest grid
Vcg :=N−1

cg fcg compute coarsest grid approximate solution
ccg :=Vcg− V̄cg compute correction on the coarsest grid
cig := Pccg prolongation of the correction to the intermediate grid
Uig :=Uig + cig correct solution on the intermediate grid
Uig :=Sig(Uig, 0ig, ν2) ν2 postrelaxation iterations

until the steady state solution on the intermediate grid is achieved

U0
f g := PUig prolongation—initial guess on the finest grid

Stage III—multigrid sweeps on three grids (V-cycles)

repeat

U f g :=Sf g(U f g, 0 f g, ν1) ν1 prerelaxation iterations
df g :=Nf gU f g compute finest grid defect
dig :=Rdf g restriction of the defect to the intermediate grid
fig :=−dig + NigV̄ig compute right hand side on the intermediate grid
Vig :=Sig(Vig, fig, ν1) ν1 prerelaxation iterations
dig :=− fig + NigVig compute intermediate grid defect
dcg :=Rdig restriction of the defect to the coarsest grid
fcg :=−dcg+ NcgV̄cg compute right hand side on the coarsest grid
Vcg :=N−1

cg fcg compute coarsest grid approximate solution
ccg :=Vcg− V̄cg compute correction on the coarsest grid
cig := Pccg prolongation of the correction to the intermediate grid
Vig :=Vig + cig correct solution on the intermediate grid
Vig :=Sig(Vig, fig, ν2) ν2 postrelaxation iterations
cig :=Vig − V̄ig compute correction on the intermediate grid
cf g := Pcig prolongation of the correction to the finest grid
U f g :=U f g + cf g correct solution on the finest grid
U f g :=Sf g(U f g, 0 f g, ν2) ν2 postrelaxation iterations

until the steady state solution on the finest grid is achieved

The components of the above full multigrid–full approximation storage (FMG-FAS)
algorithm are discussed below.

1. Full Multigrid (FMG)

According to the FMG approach, computations are initially performed on the coarsest
grid in order to provide a good initial guess for the intermediate grid. The same procedure is
repeated on the intermediate grid in order to provide a good initial guess for the finest grid.
Thus, FMG for three grids can be divided into three stages: two auxiliary stages, where
the steady state coarsest and intermediate grid solutions are computed, and the main stage
where multigrid sweeps on three grids are performed.
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2. Full Approximation Storage(FAS)

This algorithm was first proposed by Brandt (see [3] and discussion in [4, 5]) due to the
nonlinearity of the problem. In the present work the FMG is combined with FAS. As known,
for linear problems a correction of the solution on the fine grid can be directly computed on
coarser grids using the same solution matrix with the right-hand sides of the equations being
therestricted defect. However, this is not the case when nonlinear problems are solved. For
nonlinear problems the multigrid corrections are formed as differences between some basic,
reference solution and the currently computed approximation of this solution. That is why
the three-grid FAS algorithm requires the calculation of the so-calledcoarse-gridfunctions.
In the case of the three-level multigrid these functions need to be defined for the coarsest,
V̄cg, and intermediate grids,̄Vig, respectively. In the original Brandt’s algorithm (henceforth
labelled FAS-1) these functions are computed as projections of the current intermediate and
finest grid solutions onto the coarsest and intermediate grids, respectively,

V̄cg = RVig, V̄ig = RUf g

whereR is the restriction operator. Another approach (henceforth labelled FAS-2) is realized
here; the computed, via the FMG, steady state coarsest and intermediate grid solutions,Ucg

andUig, are used as coarsest and intermediate grid functions in Brandt’s FAS algorithm:
V̄cg = Ucg, V̄ig = Uig.

Several numerical experiments were performed during the development of the present
method and showed that the above implementation improves the performance of the multi-
grid algorithm in the case of fine grids and, additionally, this performance was retained
for all flow cases and grids used. The effects of the coarse grid function on the multigrid
acceleration are demonstrated in the results section for cavity flow calculations.

3. Relaxation Procedure

The single-grid algorithm described in Section 2 is used as relaxation procedure, (Sf g,
Sig) and coarsest-grid solver. It should be noted that the Navier–Stokes solver used on the
coarsest and intermediate grids is slightly different than the original single-grid solver. This
is due to the fact that the right-hand side of the Navier–Stokes equations is identically zero
inside the domain only in the case of the single-grid algorithm. In the case of the multigrid
method the right-hand side of the equations on the coarsest and intermediate grids is not
zero, due to the additional terms arising from the FAS linearization procedure.

4. Intergrid Transfer Operators

The restriction operator for the residuals is obtained by the volumes’ weighted summation
of the residuals over the fine-grid control volumes (CVs) which subsequently form the
current coarse-grid CVs. The present implementation of the multigrid algorithm is based
on the assumption that any coarse-grid CV consists of eight fine-grid CVs. In the case of
simple geometries the original domain is covered by a coarse grid and this grid is further
refined in such a way that any coarse-grid volume is split into eight fine-grid volumes. For
complex geometries it is, however, suggested to first generate the finest grid, and then to
construct the coarser grids by eliminating lines of the fine grid.

Various prolongation operators have been employed. For the sake of simplicity these
operators are described below for the case of uniform grids. However, in the case of the
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FIG. 3. Schematic of the linear prolongation in 1D case:•, coarse-grid CV;◦, fine-grid CV.

bilinear and trilinear prolongation on nonuniform grids, geometrical factors (grid-weighted
averages) such as the distances between grid nodes, have been taken into account. Let us
denote byU f andUc the values of the variableU on the fine and coarse grids, respectively.
For one-dimensional problems, the fine-grid cells with indices(2i − 1) and(2i ) will form
a coarse-grid cell denoted by the index(i ).

The simplest definition of the prolongation operator is the linear interpolation (see also
Fig. 3):

U f
2i =

1

4
Uc

i+1+
3

4
Uc

i

U f
2i+1 =

3

4
Uc

i+1+
1

4
Uc

i .

For two- and three-dimensional cases, bilinear or trilinear prolongation formulas can be
obtained by combining 1D linear interpolation. A schematic of the bilinear interpolation
for the two-dimensional case is shown in Fig. 4, while for the three-dimensional case the
prolongated value onto a fine-grid cell with indices(2i, 2 j, 2k) is given by:

U f
2i,2 j,2k =

1

64
Uc

i+1, j+1,k+1+
3

64
Uc

i+1, j+1,k +
3

64
Uc

i+1, j,k+1+
3

64
Uc

i, j+1,k+1

+ 9

64
Uc

i+1, j,k +
9

64
Uc

i, j+1,k +
9

64
Uc

i, j,k+1+
27

64
Uc

i, j,k.

FIG. 4. Schematic of the bilinear prolongation in 2D case:•, coarse-grid node;◦, fine-grid node.
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FIG. 5. Schematic of the piece-wise constant prolongation in 1D case.

Another prolongation operator tested in this study is the piece-wise constant prolongation.
For the 1D case this operator is defined as (see also Fig. 5)

U f
2i−1 = Uc

i

U f
2i = Uc

i

while for a three-dimensional problem the operator is written as

U f
2i−1,2 j−1,2k−1 = U f

2i−1,2 j−1,2k = U f
2i−1,2 j,2k−1 = U f

2i−1,2 j,2k

= U f
2i,2 j−1,2k−1 = U f

2i,2 j−1,2k = U f
2i,2 j,2k−1 = U f

2i,2 j,2k = Uc
i, j,k

It should also be pointed out that in contrast to the trilinear prolongation the present piece-
wise constant prolongation is not based on grid-weighted averaging. An upwind piece-wise
constant prolongation has also been implemented. For the one-dimensional case this is
written as

U f
2i = U f

2i+1 = Uc
i for ui > 0

and

U f
2i = U f

2i+1 = Uc
i+1 for ui < 0,

whereui is the velocity of the fluid. The above is schematically shown in Fig. 6 for the 2D
case whenui > 0 (the extension in 3D is straightforward).

In addition to the implementation of the trilinear, piece-wise constant and upwind piece-
wise constant prolongation, a combination of upwind prolongation in the streamwise direc-
tion and bilinear in the cross-stream plane (henceforth labelledmixed-prolongation) was
also implemented and tested. This prolongation is schematically shown in Fig. 7 for the 2D
case whenui > 0.

FIG. 6. Schematic of the upwind piece-wise constant prolongation in 2D case.
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FIG. 7. Schematic of the mixed-prolongation in 2D case.

5. Coarsest Grid Solution

A multigrid algorithm can be realized by either a “steady-type” or “unsteady-type” pro-
cedure. The “steady-type” procedure is similar to that used in multigrid algorithms for
elliptic problems. In this case the solution on the coarsest grid is computed almost exactly.
In the “unsteady-type” multigrid the equations on the coarsest grid are not solved until the
convergence is achieved. Similarly to the single-grid solution a pseudo-unsteady problem is
solved according to which some of the time steps are performed on the finer grids and others
on the coarsest grid. In the present work an “unsteady-type” multigrid has been developed.

4. RESULTS

The performance of the multigrid algorithm was investigated for the following three-
dimensional incompressible flows: (i) the flow development in a straight 3D channel of
square cross-section, (ii) flow in a cubic cavity, and (iii) flow in a 3D channel with strong
curvature.

For the channel flow a Reynolds number of 100, based on the centre-line velocity and
channel width, is used. The calculations were performed on a single quadrant of the channel
due to the symmetry. In order to investigate the multigrid performance on different grids,
calculations were performed for two cases corresponding to fine grids with size 58×39×39
(case 1) and 42× 17× 17 (case 2), respectively. The grid points were slightly clustered in
thex-direction near the channel entrance, while the grid was uniform in the other directions.
The computed pressure coefficient along the channel centre-line was compared with the
experimental data of Beaverset al. [28] (Fig. 8). The axial development of the streamwise
velocity at the channel centre-line as well as the velocity profile atX/(D ∗ Re)= 0.02
(D is the channel width) were compared with the corresponding laser Doppler velocimetry
measurements of Goldstein and Kreid [29] (see also Fig. 8).

The efficiency of the multigrid method was assessed against the mesh-sequencing and
single-grid algorithms. According to the mesh-sequencing technique the solution is first
obtained on a sequence of coarser grids in order to provide an initial guess for the solution
on the fine grid. One can easily understand that the first auxiliary stage of the FAS-FMG
method is identical with the mesh-sequencing procedure used for solving the equations on
the coarsest grid.
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FIG. 8. Comparison of the computations with experimental results (Re= 100) for the three-dimensional entry
flow in a rectangular channel: (a) pressure distribution along the centreline; (b) development of the velocity along
the centreline; and (c) streamwise velocity profile atX/(Re∗ D) = 0.02 (grid 58× 39× 39).

The pressure residual against the corresponding work units is plotted in Fig. 9 for the
multigrid (MG), mesh-sequencing (MS) and single-grid (SG) solutions for the case (1),
while the corresponding work units for the cases (1) and (2) are shown in Table I. The
work units are calculated by taking into account that one relaxation step at the grid level
l is equivalent to 1/8l−1 work units of the finest grid (l = 1). The pre- and postrelaxation

TABLE I

MG Sweeps and Total Work Units for the 3D

Channel Flow (Three-Level MG)

Grid Method Work units MG sweeps

58× 39× 39 MG 2429 105
MS 32400
SG >67000

42× 17× 17 MG 1000 47
MS 9500
SG >19500

Note.Re= 100.



           

NONLINEAR MULTIGRID FOR N-S EQUATIONS 313

FIG. 9. Convergence history for the 3D entry flow in channel (grid 58× 39× 39).

iterations have also been included in the total work units. As can be seen from Table I by
comparing the SG and MG work units, the MG algorithm offers a significant acceleration
of the computations by a factor of over 30 and 19.5 for the cases (1) and (2), respectively.
Comparing to the MS solution the acceleration factor is 13.3 and 9.5 for the cases (1) and
(2), respectively. In the case of the SG solution the exact acceleration cannot be estimated
since the computation was stopped before the prescribed convergence level is reached.
The fact that an acceleration over 30 times had already been achieved, provided sufficient
evidence for the efficiency of the MG algorithm. One can also notice from Table I that the
MG sweeps are increasing from case (2) to case (1). This is due to the “unsteady-type” of
multigrid implementation. According to the present implementation, the equations are not
solved on the coarse grids of the MG cycle up to the final convergence and, therefore, the
MG sweeps required will not be independent of the grid size. We have found that the above
increases the performance of the MG solver by reducing the total work units, but as a result
the MG sweeps will vary between different grids.

The above computations were performed using the following combination of multigrid
parameters:ν1= 0 pre-relaxations,νcg= 100 steps on the coarsest grid, andν2= 15 post-
relaxations on each multigrid sweep. In all computations presented in this paper the artificial
compressibility parameter was kept constant, equal to 1. Themixed-prolongationwas used
for the velocities after the auxiliary stage of the FMG, while the trilinear interpolation was
used to prolongate the pressure and corrections from the coarse to the fine grid within each
multigrid sweep.

Most of the multigrid studies in literature employ the trilinear interpolation as a prolon-
gation operator. In some papers the choice of the piece-wise constant prolongation is also
used. In general, the trilinear interpolation should be used for second-order derivatives (e.g.
viscous terms) and the piece-wise interpolation for first-order derivatives (e.g. convective
terms). However, the best choice for the prolongation operator is not obvious, especially in
viscous flows where large gradients occur. In the present study four different variants of the
prolongation operator were investigated:

1. mixed-prolongationfor u, v, andw after the auxiliary stage, trilinear prolongation for
p and corrections;
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TABLE II

MG Sweeps (Three-Level MG) and Total Work

Units Using Different Prolongation Operators

Type of prolongation MG sweeps Work units

(1) 105 2429
(2) 137 2875
(3) 231 4988
(4) 226 4886

2. trilinear prolongation at all stages of the FMG-FAS procedure;
3. piece-wise constant prolongation at all stages of the FMG-FAS procedure;
4. upwind piece-wise constant prolongation foru, v, andw after the auxiliary stage, and

trilinear prolongation forp and corrections.

The results using the above four variants are shown in Table II. In this table the number
of multigrid sweeps (MG sweeps) on the fine-grid, required for steady state solution with
accuracy of 10−6 for the L2-norm of theu-residual, is shown. The number of work units
is also given to allow comparison of the efficiency between different multigrid variants. As
can be seen, the best results are obtained using the mixed-prolongation for velocities at the
end of each auxiliary stage, combined with the trilinear interpolation for prolongating the
pressure and corrections from the coarse to the fine grid during the multigrid sweeps.

As mentioned in Section 3, in the “unsteady-type” multigrid the equations on the coarsest
grid are not solved up to the convergence, but a number of relaxation steps are performed.
The dependence of the multigrid convergence on the relaxation steps is shown in Table III.
The best performance is obtained for 100 relaxations, but the optimum number of relaxation
iterations is not possible to be defined in advance. Various numerical experiments performed
in this study showed that 80 to 100 relaxation steps on the coarsest grid during the MG
cycles are sufficient to provide satisfactory convergence rates.

The effect of the pre- and postrelaxations has also been investigated and results are
shown in Table IV. It is seen that multigrid is more efficient when only postrelaxations are
performed. This conclusion is also in agreement with previous investigations by de Zeeuw
[30] for the case of linear problems.

The second case is the flow in a cubic cavity at Re= 1000. No-slip boundary conditions
for all velocity components on the wall were employed. In addition, no-slip conditions were
used for thev andw velocity components on the upper lid of the cavity. Calculations were
performed for two cases with the finest grids, 31× 31× 31 and 47× 47× 47, respectively.

TABLE III

Effects of the Coarse-Grid Iterations on

the MG Sweeps (Three-Level MG)

νcg MG sweeps Work units

100 105 2429
400 86 2447
30 210 4332
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TABLE IV

Effects of the Pre- and Postrelaxation Itera-

tions on the MG Sweeps and Total Work Units

(Three-Level MG; Grid 58 × 39× 39)

ν1 ν2 MG sweeps Work units

0 15 105 2429
10 50 80 5521
5 10 188 2900

The streamlines in thex− y (z= 0.5) and y− z (x= 0.5) planes are shown in Fig. 10.
The convergence histories for the fine-grid case are shown in Fig. 11 and the work units are
summarized in Table V. For the fine-grid case, 86 MG sweeps are sufficient to provide the
steady state solution. In this case acceleration of the convergence by a factor of about 32,
compared to the SG solution, was achieved. An investigation of the pre- and postrelaxation
iterations on the multigrid performance was carried out using the 31× 31× 31 grid, and
the results are summarized in Table VI. It was found that 10 to 15 relaxation iterations are
sufficient for an efficient multigrid solution. Results for the effects of the coarse-grid func-
tion (see Section 3.2) on the MG performance are also presented in Table VII. The results
indicate that the FAS-2 implementation offers a 15% to 20% reduction of the total work
units.

The last case is the three-dimensional flow at Re= 790 in a 90◦ bend of 40× 40 mm cross
section. This flow case was experimentally studied by Humphreyet al. [31]. A schematic
of the flow geometry is shown in Fig. 12. The mean radius of the bend is 92 mm attached
to the end of rectangular channel. A straight extension section is attached upstream of the
bend entrance. The parameters of the experiment are such that the bend has a large enough
turning angle and a small enough mean radius to generate severe distortion and a significant
secondary flow. The multigrid performance was investigated on two different grids. The
first grid has 80 nodes in the streamwise direction, and 80× 40 in the transverse plane, i.e.
a total 256,000 grid points. The second grid has 40 nodes in the streamwise and 40× 20 in

FIG. 10. Streamlines on the planesx = 0.5 (left) andz= 0.5 (right), for the grid 47× 47× 47.
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FIG. 11. Convergence history for the cubic cavity flow (grid 47× 47× 47).

FIG. 12. Schematic of the 90◦ curved channel.
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TABLE V

MG Sweeps and Total Work Units for the

Cubic Cavity Flow (Three-Level MG)

Grid Method Work units MG sweeps

47× 47× 47 MG 1935 86
MS 33600
SG ∼62000

31× 31× 31 MG 1250 53
MS 4200
SG 8500

Note.Re= 1000.

TABLE VI

Effects of the Pre- and Postrelaxation Iterations on the

MG Sweeps and Total Work Units (Three-Level MG;

Cubic Cavity Flow, Grid 31 × 31× 31)

ν1 ν2 MG sweeps Work units

0 15 53 1250
10 15 75 2376
0 10 73 1510
0 20 46 1327
0 5 123 1352

TABLE VII

Effects of the FAS-1 and FAS-2 Implementa-

tion on the Total Work Units (Cubic Cavity Flow,

Grid 47 × 47× 47)

Grid FAS-version Work units

47× 47× 47 FAS-1 2322
FAS-2 1935

31× 31× 31 FAS-1 1438
FAS-2 1250

TABLE VIII

MG Sweeps and Total Work Units for the 3D Flow

in a Curved Channel (Three-Level MG)

Grid Method Work units MG sweeps

80× 80× 40 MG 2290 100
MS 33200
SG >70000

40× 40× 20 MG 1294 62
MS 11000
SG 23000

Note.Re= 790.
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FIG. 13. Comparison of the numerical (grid 80× 80× 40) with experimental results [31]: (a)θ = 60◦ and
R̃= 0.3; (b) θ = 60◦ andR̃= 0.7; (c) θ = 90◦ andR̃= 0.3; (d) θ = 90◦ andR̃= 0.7.

the transverse plane. Computations were carried out using the half section of the duct in the
z-direction because of symmetry. As inflow conditions the corresponding developed flow
in a straight duct at Re= 790 was imposed at the inlet.

In Fig. 13 comparisons of the present computations with the experimental results of
[31] are shown. The comparisons are presented at two different radial locations,R̃= 0.3
andR̃= 0.7, for anglesθ = 60◦ andθ = 90◦. TheR̃ is defined bỹR= (R− Ro)/(Ri − Ro),
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FIG. 14. Formation of the secondary flow atθ = 90◦ (grid 80× 80× 40).

whereRi andRo are the inner and outer radius, respectively. The comparisons show that the
present predictions are in satisfactory agreement with the experimental results. In Fig. 14
the formation of secondary flow atθ = 90◦ is shown.

Similar to the previous cases calculations were also carried out using the mesh-sequencing
and single-grid algorithms. The work units and MG sweeps are shown in Table VIII, and
the convergence histories are shown in Fig. 15. The MG algorithm offers a significant
acceleration of the convergence, especially in the case of the fine grid. Compared to the
corresponding SG work units the acceleration factor is over 31 times. The SG computation
was stopped when the convergence level had reached the value of 7× 10−6 compared to
the corresponding value of 10−6 for the MG solution. An acceleration factor of 14.5 is
achieved when the MG work units are compared with the corresponding ones for the MS
technique.

FIG. 15. Convergence history for the 90◦ curved channel case (grid 80× 80× 40).
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5. CONCLUSIONS

A nonlinear full multigrid—full approximation storage algorithm was developed in con-
junction with the artificial compressibility formulation and a third-order upwind characteris-
tics-based method. The time integration was obtained by the fourth-stage Runge–Kutta
scheme. The multigrid performance was investigated for various three-dimensional incom-
pressible flows and validation of the method was performed on different grid sizes up to
256,000 grid points.

The results showed that the present multigrid algorithm offers a significant acceleration
of the computations in comparison with the single-grid and mesh-sequencing algorithms.
The effects of different prolongation operators on the multigrid performance were also
investigated. It was found that the prolongation operators may have significant effects on
the multigrid acceleration. The best results were obtained by a combination of themixed-
prolongationfor the velocities at the end of each auxiliary stage, and trilinear prolongation
for the pressure and corrections during the multigrid cycles. An investigation of the effects
of pre- and postrelaxation iterations on the multigrid performance was also carried out. The
best results were obtained when pre-relaxation iterations were not performed. The optimum
number of postrelaxation iterations is difficult to be estimated in advance. An increase of
the postrelaxation iterations leads usually to a reduction of the MG sweeps, but also in an
increase of the total work units since the computational work per MG-sweep increases. On
the other hand, several numerical experiments were performed during the development of
the present method and showed that 15 postrelaxation iterations are sufficient to provide
good convergence rates.

The coarse-grid iterations may also have a significant effect on the multigrid accelaration.
Similar to the postrelaxation iterations, the optimum number of coarse-grid iterations can-
not be estimated in advance. On the other hand, an increase of this number by a factor of 3
or 4 will not lead to a significant increase of the total work units because these iterations are
performed on the coarsest grid. The numerical experiments revealed that the definition of
the coarse-grid function in the FAS procedure can also affect the multigrid acceleration. It
was shown that the definition of this function on the basis of coarse-grid solutions obtained
through the FMG procedure, improves the multigrid performance. Finally, the same dis-
cretization scheme was used at all grid levels and no problems were encountered concerning
the numerical stability of the third-order upwind differencing.

ACKNOWLEDGMENT

The financial support from CEC under Grant CP 1239 PEGAS is greatly acknowledged.

REFERENCES

1. R. P. Fedorenko, A relaxation method for solving elliptic difference equations,USSR Comput. Math. Phys.1,
1092 (1961).

2. N. S. Bakhvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator,
USSR Comput. Math. Phys.6, 101 (1966).

3. A. Brandt, A multilevel adaptive solutions of boundary value problems,Math. Comput.31, 333 (1977).

4. W. Hackbusch,Multi-Grid Methods and Applications(Springer-Verlag, Berlin/Heidelberg/New York/Tokyo,
1985).

5. P. Wesseling,An Introduction to Multigrid Methods(Wiley, New York, 1991).



     

NONLINEAR MULTIGRID FOR N-S EQUATIONS 321

6. W. K. Cope, G. Wang, and S. P. Vanka, A staggered grid multilevel method for the simulation of fluid flow in
3-D complex geometries,AIAA Paper 94-0778(1994).

7. A. J. Chorin, A numerical method for solving incompressible viscous flow problems,J. Comput. Phys.2, 12
(1967).

8. J. Farmer, L. Martinelli, and A. Jameson, A fast multigrid method for solving incompressible hydrodynamic
problems with free surfaces,AIAA-93-0767(1993).

9. Ch. Sheng, L. K. Taylor, and D. L. Whitfield, An efficient multigrid acceleration for solving the 3D incom-
pressible Navier–Stokes equations in generalized curvilinear coordinates,AIAA-93-2335(1994). [AIAA J.
33(11) (1995)]

10. A. Jameson, Solution of the Euler equations for two dimensional transonic flow by a multigrid method,Appl.
Math. Comput.13, 327 (1983).

11. A. Jameson, Computational transonics,Comm. Pure Appl. Math.41, 507 (1988).

12. A. Jameson, A vertex based multigrid algorithm for three-dimensional compressible flow calculations, in
ASME Symposium on Numerical Methods for Compressible Flows, Annaheim, December, 1986.

13. F. Liu and A. Jameson, Multigrid Navier–Stokes calculations for three-dimensional cascades,AIAA J.31,
1785 (1993).

14. H. Kuerten and B. Geurts, Compressible turbulent flow simulation with a multigrid multiblock method, in
Proc. Copper Mountain Multigrid Conference, 1993, p. 305.

15. F. B. Lin and F. Sotiropoulos, Strongly-coupled multigrid method for 3D incompressible flows using near-wall
turbulence closures,J. Fluids Engnrg.119, 314 (1997).

16. L. D. Dailey and R. H. Pletcher, Evaluation of multigrid acceleration for preconditioned time-accurate Navier–
Stokes algorithms,Comput. Fluids25, 791 (1996).

17. P. Lotstedt, Improved convergence to the steady state of the Euler equations by enhanced wave propagation,
J. Comput. Phys.114, 34 (1994).

18. J. Steelant, E. Dick, and S. Pattijn, Analysis of robust multigrid methods for steady viscous low Mach number
flows,J. Comput. Phys.136, 603 (1997).

19. D. Drikakis, P. Govatsos, and D. Papantonis, A characteristic based method for incompressible flows,Int. J.
Num. Meth. Fluids19, 667 (1994).

20. D. Drikakis, A parallel multiblock characteristics-based method for three-dimensional incompressible flows,
Adv. Eng. Software26, 111 (1996).

21. R. Radespiel and R. C. Swanson, Progress with multigrid schemes for hypersonic flow problems,J. Comput.
Phys.116, 103 (1995).

22. P. S. Vassilevski, Preconditioning nonsymmetric and indefinite finite element matrices,J. Numer. Lin. Alg.
Appl.1, 59 (1992).

23. J. Xu, New class of iterative methods for non-self adjoint or indefinite problems,SIAM J. Numer. Anal.29,
303 (1992).

24. J. Xu, A novel two-grid method for semilinear elliptic equations,SIAM J. Sci. Comput.15, 231 (1994).
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